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Abstract. The mass operator of an electron in a plane wave field of arbitrary polarization is 
calculated to lowest order of a (but exactly with respect to the external field). It is 
represented by a threefold integral over elementary functions or a double integral over 
exponential integral functions. For a monochromatic plane wave and circular polarization 
the number of integrations reduces by one and the mass operator turns out to be almost 
diagonal. In this case the corrected propagator is obtained and the modifications of the 
quasi-levels of the electron are investigated. The property of the mass operator and the 
propagator to be almost diagonal is related to a special symmetry of the circularly polarized 
field and found to be valid to all orders. 

1. Introduction 

Due to constant progress in the development of high power lasers the investigation of 
the behaviour of electrons in strong electromagnetic fields has found growing interest. 
Since the laser frequency is small compared to characteristic frequencies in high-energy 
effects, the ‘zero frequency’ approximation of the laser field by a constant, crossed field 
has been used frequently in this context (Ritus 1970, 1972). If, however, the values of 
the relevant parameters are large enough to yield experimentally observable effects, 
this approximation can become inadequate. Electrons in a field periodic in time or 
space-time exhibit a quasi-level structure (Nikishov and Ritus 1964, Reiss and Eberly 
1966, Ritus 1967, Zeldovich 1967). Essentials of all processes involving electrons in 
laser fields (stimulated bremsstrahlung, Compton scattering, Merller scattering etc) are 
easily understood in terms of transitions between these quasi-levels (cf Mitter 1975, 
Becker 1976). To lowest order the dispersion law of the quasi-levels in a monochroma- 
tic laser field is simply 

where k denotes the wavevector of the laser field, K* is a (real) effective mass and the 
integer n enumerates the different levels. This dispersion law is modified by radiative 
corrections of order a, a 2  etc, which influence all processes in this way. The corrections 
are of particular importance, since the unmodified dispersion law causes resonance 
infinities in the cross sections for some processes, e.g. stimulated Compton and Moller 
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scattering (Oleinik 1967a, b). These infinities become finite resonances, if the modified 
dispersion law is used, in which the quasi-levels get a finite width of order a. 

In order to obtain the modified levels, the corrected propagator must be calculated, 
which in turn involves the mass operator. In the second section we calculate to lowest 
order in a the Volkov transform of this operator, which is the simplest and most 
adequate representation of all quantities referring to electrons in laser fields, especially 
with respect to renormalization problems. Since the calculational techniques have been 
discussed at length elsewhere (Mitter 1975) we give no details of the evaluation. The 
result can be reduced to a triple integral of elementary functions or a double integral of 
exponential integrals. For a monochromatic and circularly polarized plane wave field 
one of these integrations can be performed exactly and we obtain a remarkable 
structure: the Volkov transform of the mass operator contains only terms of order 
S ( p  - p ‘ )  and S ( p  - p ’  f k). This structure is the consequence of a higher symmetry of 
the circularly polarized field and is shown to hold to all orders in a in appendix 2. A 
similar phenomenon occurs for the vacuum polarization tensor (Becker and Mitter 
1975). The ‘almost diagonal’ structure of the mass operator allows for a comparatively 
easy calculation of the propagator, which exhibits the same structure (D 3). The poles of 
the propagator are discussed extensively in an approximative way by means of 
numerical estimates. A more general discussion and explicit formulae are given in 
appendix 1. Our approximate results agree with those obtained by other authors (Baier 
eta1 1975) from averaging the mass operator on the mass shell. It turns out, however, 
that the poles of the propagator are not correctly obtained by this method for very small 
energies (2(pk)/~’<< a), so that our general formulae have to be used in this case. The 
modified quasi-levels are obtained in 0 4 by a transformation from the Volkov to the 
ordinary momentum representation of the propagator. 

2. Self-energy 

The laser field is described by a plane wave with wavevector k : 

where a summation convention is understood for repeated polarization indices. 
For the calculation of the self-energy and the propagator the technique of the 

Volkov transform turns out to be useful. This amounts to representing any quantity 
F(x, x’) referring to an electron (as e.g. the self-energy E, the uncorrected propagator G 
or the corrected one G’) sandwiched between Volkov wavefunctions E(xIp) in the 
following way: 

and computing P rather than F. The functions E fulfil the Dirac-type equation 

l l ( x ) E ( x I p )  := rv(id’ - e A v ) E ( x ( p )  = E(xIp)p. (2) 

Hence E ( X [ ~ ) + ~  with a free spinor &, such that @- K)I& = 0 solves the Dirac equation. 
The E can be continued off the mass shell for p so that they are orthogonal and complete 
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/ E ( x ( p ) E ( x l p ’ )  d4x=S(p-p’) 
( 2 d 4  

E ( x l p ) E ( x ’ l p )  d4p = S(X -x’).  
(3) 

In addition to calculational simplicity, the Volkov transform has some general advan- 
tages in comparison with the Fourier transform, which is its limit in absence of the 
external field. For instance, it does not depend on the gauge chosen for the latter, and 
we may use the conventional Feynman rules and propagators familiar from the theory 
without external field. The only difference is, that we have to use instead of the vertex 
y,S(p - p ’  + q )  the modified expression: 

Explicit formulae for E and U, and more details on Volkov transforms have been 
discussed in an earlier paper (Mitter 1975, to be referred to as M). 

For the self-energy we have to consider the expression (M(VII.11)) 

Here .Vu is the free photon propagator in momentum space. We shall extract the 
self-energy in the absence of the external field E&) writing: 

The second term %L does not contain any (infrared or ultraviolet) divergencies, so that 
no regularization procedure is needed for this term. At a first glance the convergence of 
the part depending on the external field seems surprising, since a perturbation expan- 
sion of Z(x, x’) with respect to the coupling to the latter field contains the vertex part, 
which diverges logarithmically. That things are different and better for the Volkov 
transform, is due to gauge invariance. Since C(x, x’) diverges linearly, an expansion at 
small distances will contain two divergent contact terms proportional to the S function 
and its derivative. Because of gauge invariance the derivative must appear in the 
combination IT,, so that we have 

X ( x ,  x’ j  = (A  + BFf ( x j )  S(x - x ’ )  +finite terms. (7) 
The divergent constants A,  B could only depend on the external field via invariant 
combinations formed with F”“. Since, however, all these combinations are zero in our 
case, A and B cannot depend on the laser field at all. Because of equation (2) the 
Volkov transform of the contact term in (7) yields just the divergent part of the free 
self-energy and g L  is indeed finite. Thus the renormalization problem reduces to the 
corresponding one in the absence of the laser field. We shall therefore assume 
henceforth, that &(p)  is already properly renormalized, so that K is the physical mass 
and 2, = 1. (In the language of Schwinger’s source theory this removal of the contact 
terms is called propagator normalization, cf the corresponding treatment for a constant 
magnetic field (Tsai et a1 1973).) Then E&) is an expression of the form 

Z , ( p )  = K B j O ’ c p 2 )  +@j’’(p2). (8) 
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The functions BF) are proportional to a and fulfil the relations 

Br)(K ’) + Bp)(K *) = 0 
(9)  

The explicit form of BF) depends on the gauge chosen for the quantized radiation field 
and can be found in the literature, cf Bj$rken and Drell(l965,g 8) (Feynman gauge) or 
Breitenlohner and Mitter (1968, 0 6) (Yennie-Fried gauge; in this case the infrared 
divergences are absent to this order in a). We shall not need these expressions for our 
purposes. 

is somewhat lengthy but standard, and we shall omit the 
details. We shall use the Feynman gauge, for which the photon propagator is given by 

The calculation of 

m 

D,,(q) = i Io dt  elt(qz+le) &U. (10) 

In fact, it would also be possible to use any other covariant gauge, i.e. to replace g/”” by 
gw” - itg’q” with an arbitrary constant G, since the gauge term can be calculated easily 
using the relation (M(V.6)) for the vertex U,. We have, however, not reached any 
apparent simplification by choosing any G Z O ,  so that the Feynman gauge seems 
preferable. For the calculation the use of light-like coordinates is very convenient, since 
then as many integrations as possible are trivial. The field dependent part can be 
expressed in terms of threefold integrals oLelementary functions. We shall give the 
result in terms of some functions (Li, Mi, R, R, r> of two variables r),  [, which have been 
used before in calculating vacuum polarization effects (Becker and Mitter 1975) and are 
extensively discussed in appendix 1 of this reference. 

In addition to these functions we shall use the abbreviations 

Y = Y0[1 +(T/K2)1? Yo= 5K2/21Pkl (1 1) 

and the integrals 

which can be expressed in terms of the exponential integral of imaginary argument, e.g. 
K{,(y) = exp(iy)E,(iy), cf Abramowitz and Stegun (1965). The expression for the 
self-energy then becomes: 

which fulfil 
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The coefficients in (13) read 

2175 

(15) 

with 
PCO' = 2(KOZ(Y) - Ko2(Yo)) P") = -(KO3(y)-K03(YO)) 

P ( ~ )  = ~ I ( ~ ~ ~ N - R K ~ A Y )  + 2 5 ~ ? ~ 1 3 ( y ) + 4 5 ~ ? ~ 0 2 ( ~ ) )  

F3)  = ifi5/(21Pkl)(Kl,(Y) +Kl,(Y))  (16) 

0:'' = LiK13(Y) 

Q ! ~ )  = -pk/Ipk I e i ~ j ( ~ 0 3 ( ~ )  + ~ 0 2 ( ~ ) ) *  

a!'' = 2K/lpk (MKoP(Y) 

The form (16) holds for arbitrary plane wave fields. One may check, that the expression 
has the correct behaviour under charge conjugation 

e(p, p'(A) = C Z ( - p ' ,  -p(-A)TC-'. (17) 
The symmetry property (17) holds also for the corrected propagator and is valid to 
arbitrary order in a. 

For a constant, crossed field (e.g. a ,  = a2 = k x )  the self-energy becomes diagonal 
and we recover the result given by Ritus (1972) for this case. For circular polarization 

a ,  = cos kx,  a2 = -sin kx 

the v-dependence of Li a?d Mi is elementary, all bilinear combinations of these 
functions as well as T, R,  R do not depend on 7 and the integral on 7) reduces to S 
functions. The result has the form 

(18) e@, p' )  = S'O'(p)S(p - p ' )  +S'+' (p)S(p  - p ' +  k )+S ' - ' (p )S (p  - p ' -  k )  

with 
S'O'(p) = C'O'(p) + ZP'(p). 

This general structure results to arbitrary order in CY (see appendix 2). In first 
approximation we have 

cZp' = KB'') + p~ ( l )  + k ~ ' ~ '  + i y 5 k ~  ( 3 )  (20) 
with the same functions B as given above: of course now the corresponding functions R 
etc for circular polarization have to be used in P'k) (cf formulae (A1.4)-(A1.6) of 
Becker and Mitter 1975). The non-diagonal part is given by 

~"'(p) = (C$"*~CI"+~Y~C?))Z+ (21) 

Z* = (e*l * iZJ/ J2 

where we have 

and 

The Q ( k )  contained in this expression are obtained from the Q j k '  used above by the 
replacement 

~i + -L/ J2,  Mi + -M/ J2,  EikMk + J2. ( 2 3 )  
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3. Corrected propagator 

Now we shall evaluate the corrected propagator for circular polarization. We have to 
solve the equation 

with 

The solution 

I G’-’(x, x”) d4xf’ G’(x’’, x’) = S ( x  -x’) 

is most easily obtained, if we represent G’ according to (1) and invert 
first the corresponding equation for @, which reads (cf M(VII.lO)) 

P ( p ,  p’ )  = (p- K ) S ( p  - p f )  -%p, p’).  (26) 

Since 5 is ‘almost diagonal’ for circular polarization, the inversion reduces to a set of 
algebraic equations. These turn out to be particularly simple, if we observe, that the 
propagator G’ has the same diagonality properties as its inverse 

Gf(p,p‘)= G‘O’(p)6@-pf)+G‘+’(p)6(p-p’+k)+ G ‘ - ’ ( p ) 6 ( p - p r - k ) .  (27) 

This structure holds, as the corresponding one for 5, to arbitrary order in a and is due to 
the additional symmetry encountered for circular polarization as mentioned in (M, 0 V). 

The parts entering (27) are then obtained in terms of the corresponding ones in (18) 
by 
G‘”@) = - K - S‘O’(p) - s‘+’(p)@ +k - K - S‘’’(p -k k))-’s‘-’(p -k k )  

- S(-’(p)@-k - K  - S‘O’(p - k))-l#+)(p - k)]-1 (28) 

G“’@)= @ - K  -S‘o’(p))-’s‘*’(p)G‘o’(p* k ) .  (29) 
These formulae hold again to arbitrary order in a and contain only algebraic inversions. 
The actual calculation, which results, if we insert the second order expressions (19), 
(21), is rather tedious, but does not present any principal problem. An outline of the 
calculation is given in appendix 1.  The diagonal part has the structure 

G‘O’(p) = z+(p) W-lD+(p) +Z-(p)  W+lD-(p) (30) 
where we have 

The functions S, Tl etc entering (31) and the denominators D, are invariants, which can 
be expressed in terms of the functions (15). Explicit expressions are given in appendix 
1. All functions contain terms up to second order in a. This is evident from (28), since 
S(*’ is proportional to a. The off -diagonal parts have the form 

Here Zo is obtained from 2, by dropping the terms of order cy2 (both functions are 
equal in this limit) and N ,  is obtained in the same fashion from D,. Explicit expressions 
are again given in appendix 1. 
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The poles of e’, i.e. the zeros of the denominator functions, are closely related to 
the quasi-levels of the electron in the laser field. The exact determination of these zeros 
is very difficult, since the corresponding functions are quite complicated. Also the 
whole propagator (30) is too complicated to be used in further calculations. For most 
applications very fine details will not matter and we shall be content with approximate 
forms of the propagator. 

The most obvious approximation is an expansion (separately in the numerator and 
the denominator) in powers of a. This may turn out to be inadequate, however, if a is 
not the smallest parameter, i.e. if 2pk/~’<< a. We shall return to this point later. To 
order a, the numerator of the diagonal part becomes 

2, = Z,  = - K (  1 +By’+ B‘”) -p( 1 -By’- B‘”) +kB”’+ iy5kB‘3) (34) 
and the denominators read 

D,(p)=N,(p)=K’(l +Br’+B‘0’)2-(1 -By’-B‘’’) 
(35) 

x [ p 2 ( 1  -BY’ -PI - 2pk(~‘”* i ~ ‘ ~ ) ) ] .  

Now we extract a factor (1 -B~)-B‘’))’  from the denominator. Expanding in powers 
of a we obtain for the expression 

R (p) = --Z0(p)/( 1 +By)-  B(1))2 (36) 

(37) 

the following approximate form: 

R (p) = K (  1 +By’ +By’+ B‘”+ B“)) + p  -kB‘*’ - iy5kB‘3) + O(a‘). 

G‘O’(P) = R (P) (  W+/Y-b) + W-/Y+(P)) 

G‘”(p) = ( K  +d)S‘”(p)(~ +d*k)/(Y,(p)  Ydp  * k)) 

Y,  (p) = p ’ - K ’ - K ’ ~ * (p )  

M,(p) = 2(By’ 4- By’ + B(O’ + B‘”) + ( 2 p k / ~  ’)(B(” f id3’). 

A corresponding approximation in the remainder of the denominator yields an approxi- 
mate form for the propagator, which is accurate up to linear terms in a. We have 

(38) 

(39) 

(40) 

(41) 
Since all B are proportional to a, the zeros of the denominators will result from an 
equation of the type p’ - K’ = af(p’, pk). We can therefore approximate p 2  by K’ in the 
argument off. Then the poles are determined by 

with 

~ ’ = K ’ ( I  + ~ , ( p ’ =  K ’ ) )  (42) 
with 

M*(p2 = .2) = ~(B(o’+B(~))+~(B(z)*~B‘~))(,*=.~ K (43) 

since the B, drop out because of (9). The functions M depend on the laser intensity 
parameter 

Y = Ea/K (44) 

p = 2 p k / ~ ’  (45) 

and the variable 
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and must be determined numerically. Equations (42) and (43) agree with the results of 
Baier et a1 (1975) obtained by mass shell averaging the mass operator. The imaginary 
part is related to the total cross section of high intensity Compton scattering (Brown and 
Kibble 1964, Nikishov and Ritus 1964, Goldman 1964). The imaginary part of (43) can 
be rewritten to yield the well known series of squares of Bessel functions (Baier et a1 
1975). 

The mass correction A K / K  = iM+ for v 2  = 1 and 0.1 s p  s 3 is plotted in figure 1. 
For smaller values of p the poles almost coincide. For p d 0.01 we can apply the 
following approximate formulae for the imaginary part which are correct up to a few 
per cent: 

Figure 1 and equation (46) exhibit the negative sign of the imaginary part of the mass 
correction, as it must be, since the electron is no longer stable but can emit photons via 
high intensity Compton scattering. Equation (46) differs remarkably from the constant 
crossed field case where only the combined variable pv occurs. 

The real part of A K / K  is seen from figure 1 to vary asp2. Hence, for small values of p 
such that p d a, our approximation breaks down since we have retained O(p2a) but 
neglected O(pa2), which becomes dominant. The determination of the real part of the 
poles becomes extremely complicated in this case and requires the complete formulae 
as given in the appendix. For p << a the zeros of D,  = 0 are to lowest order of p given by 

p 2  K 2( 1 + Re f i+ (p2  = K 2, + i Im M+(p2 = K ')) (47) 
where now 

Figure 1. Real and imaginary part of the mass shift for v 2 =  1 and 0.1 s p  s 3. 



Radiative corrections for an electron in a laser field 2179 

and M ,  is still given by equation (43). An expansion in powers of v 2  which actually can 
be used up to v 2 -  -= 1 reads 

AK a2v2p  
K 32 

Re-= f- (p << a ) .  (49) 

This is extremely small and we shall not pursue this case any longer. For all applica- 
tions, the O(a) approximate propagator as obtained by using equations (38)-(41) with 
equation (43) should prove sufficient: it incorporates a good approximation to the 
imaginary part of the poles and a fair one to the real part because the very small values 
of (48) are (wrongly) replaced by even smaller ones. In principle, however, it is 
remarkable that the mass shell average of the mass operator does not, in every case, 
yield the correct mass shift. Also the field zero limiting value a/27r of the anomalous 
magnetic moment which is related to the splitting of the real part of M,,  results correctly 
from equation (48) and not from equation (43). 

4. Levelstructure 

The quasi-levels are determined by the poles of the Fourier transform rather than the 
Volkov transform of the propagator. These transforms are related by 

&(q, 4') = & d4x d4x'G'(x, x')ei(qx-q'x') 

Here 2 is the Fourier transform of E 

For circular polarization we obtain the result 

g(q /p )  =e-i+oab,-q,)Sbi-qj) c ~ , , b ~ , p , ) ~ ( p .  - n k ,  +-- (52) 
W e2a2 

,=--a) 2P" 

where we have used the light-like coordinates and 

The argument of the Bessel functions J,, is pealpk and we have 

Pl=PcOs6,  p2 = p sin 6. 
The corresponding form in coordinate space (including the phase &,) has been given in 
(M(III.32)) for the function on shell. Here we need the corresponding off-shell form, 
which results from (M(III.32)) by pEff + p u .  If we use these results and the propagator 
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(27), the integrations can be performed trivially and we obtain 

&’(4,4’)= f a(q -q ’+rk)  f Kn(q) 
r=--CO n =--CO 

X [ G ( O ) ( ( i n ) R n  -r (4) + G(+)(dn )En - r + l ( q )  + G ( - ) ( d n  >Rn - r -  1 

Gn = q + [ n  - (e2a2/2qk)]k.  

(54) 

( 5 5 )  

with 

We observe, that the propagator in momentum space is not diagonal at all, as is known 
from the theory without radiative corrections (Reiss and Eberly 1966). Because of 

( i ~ - K Z = ( q + n k ) 2 - K 2 ( 1 + y 2 ) ,  (ink = qk 

the poles given by equation (42) correspond now to modified quasi-levels, determined 
by 

(q+nk) ’=  K ~ ( ~ + Y ~ + M * ) .  (56) 

The real part of M causes a shift and the imaginary part a finite width of these levels. As 
long as M ,  is small, the levels remain narrow. 

Appendix 1. The complete propagator 

In this appendix, we shall give the complete result of summing the self-energy 
calculated in 0 2. Approximations have been discussed in 0 3. In order to evaluate 
equations (28) and (29) we need the inverse of expressions of the form 

which has the structure displayed in equation (30), and we have 

d ,  = (s T tl)’ + (2pk (a2 f v2)  +$(al f v l ) ) ( a l  ul). (A.3) 

The functions which appear in ( 3 1 )  and (33 )  are given by 

s f - d o ( P )  r4pk11(p,)C‘T”(dFO’fidr2))/N,(p,) - ~ K ~ c I ( P & @ ’ +  @2)/N,(pi) 

V1 f A = I,@) + 21,(pT)( dzO’ f iC!!))’/N&) 

(A.4) 
V2*A2= -B‘2’(p)TiB(3)(p)+2 
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d ,  by replacing s, tl etc by S, TI etc and reads explicitly 

D*(p)N,(Pf) = N*(P)N,(p*) +4(Cf (O)' + c(2)2)2 f + 4 K  ' ~ o ( p ) Z o ( p ~ ) (  d!'' + cz'2) 
- 8 (pk ) 'I~ (P )I~ ( P ~ )  62'' T 8 ~ p k 6 2 ) [ 1 ~  (p* )z0 (P ) ( 62)  F i 62)) 
+ z1 ( p ) ~ ~ ( p * ) ( c ' $ "  * ic'!))] + 4pk [zI ( P ) ( B ' ~ ' ( ~ , )  T i ~ ( ~ ) ( p , ) ) ( ~ $ "  * i C!')' 
+ ~ ~ ( p * ) ( ~ ( ~ ) ( p )  T i ~ ( ~ ) ( p ) ) ( c ' ! ) ~  i ~ 5 5 ' ) ~ ]  

- 211 (p)~, (pf)[ p '( c'f" T i c!")' + p (c'$" * i c'2')'I 
~ , ( p )  = ~ ~ 1 ~ ( p ) ~ - 1 ~ ( p ) [ P ' 1 ~ ( p ) - 2 p k ( ~ ( ' ) * i ~ ( ~ ) ) ] .  (A.6) 

64.5) 

From their definition we infer the following behaviour of the relevant functions upon 
the substitution p + -p:  

B"'(p) = i = 0, 1 , 3  p ( p )  = -p(-p) 
c'!'(p) = C$)(--p) i = O ,  1 6,2'(p) = -C$?'(-p) 

N*(P) = W - p )  Df(p) = Dd-p) .  (A.@ 

N*(p)D*(-p*) = NT(p*)D*(P). (A.9) 

(A.7) 

and consequently 

From (A.7), (A.8) and (22) we obtain 

Equations (A.8) and (A.9) give some insight into the general structure of the poles of 
the propagator. We assume the zeros of N&) and D&) to be different. If p2 = f ( p k )  
is a zero of D+(p) = 0, then (p + k)'= f ( - p k )  is another zero because of (A.9). 
Accordingly, if p ' = g ( p k )  is a zero of D-(p)=O, ( p - k ) * = g ( - p k )  is another one. 
Because of (AA), g ( p k )  = f ( - p k ) .  So, finally, the zeros of D+(p)  are given by 

P 2  = f ( p k )  ( P  +U =f(-pk) 

p 2 = f ( - p k )  (p - k)' = f ( p k ) .  

and those of D&) by 

Hence, the poles of the propagator exhibit two independent branches, p' = f (*pk) ,  
corresponding to opposite spin orientations. As a vanishes, the zeros given by 
(p * k ) 2  = f ( T p k )  cancel because N&,) drops out from (AS) and only those given by 
N,(p) = 0 survive which we discussed above in § 3. 

One might conclude from equations (A.4) that in addition to the poles just discussed 
the zeros of N&,) give rise to further poles. This is not the case. Evaluating the 
products 2, W, in equation (30) it turns out that the functions S, Tl, A, V appear in 
combinations such that either N+(p-)-' or N-(p+)-' remains present, which then 
combines with D-(p) or D+@) to give equation (AS). The same is also true for the 
off-diagonal part (33). 

Appendix 2. Proof of diagonality properties of the propagator 

A circularly polarized plane wave field is invariant with respect to the following 
PoincarC transformations (a, L ) :  x -* x' = L(x + a )  (Richard 1972) ( k ,  = f i w n , ,  
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(A.lO) 

~w~ = gPu + (ya *npn + (y e-ideyn - (yn We + (y * e’& efn’ - (y *npeY 

-e!e;(e’& - 1)-e:eE((e-’“  ̂ - 1) (A.l l )  

where 1 is an integer, E ,  q, g are real and a is complex. The transformations specified by 
(A.lO) and (A.11) allow for arbitrary translations which are, however, accompanied by 
a compensating rotation. It is this property which leads to an almost diagonal 
propagator and mass operator. 

The electron field operator transforms according to 

U(a, L)@(x)U-’(a,  L )  = s-’(L)+A’(L(x + U ) ) .  (A.12) 

The upper index A denotes the dependence of the field operator on the vector 
potential. Hence AL=LZA,, and A and A‘ differ by a gauge transformation (cf 
(A.19)). S(L)  is the usual transformation matrix which is determined by the antisym- 
metric first order part of L,, 

I,,, = a(eC;nv - nwe;j + a*(efn’ - nwe?)-ioZ(efe:- e”,?). (A.13) 

An arbitrary vector b” is invariant with respect to special transformations (A. 11) with 

ob- id 

kb 
a=-(e -1) b, = -&e,,b’. (A. 14) 

From now on we fix a according to (A. 14) with b, = p,, the momentum vector. Since p L  
and p ,  differ by a multiple of the wavevector k, and L,,,k” = k,, p:  is invariant as well. If 
we insert (A.14) into (A.13) (to first order in 2 as required by consistency) I,,,, takes the 
simple form 

I+’ = iwZ(e^ye^l- tfe^:) (A.15) 

22 = e2 + (b*/hbk)k& 
with 

as in equation (14). Hence 

S ( L )  = exp($og[2+, 2-1) = cos $& + &?+,2-] sin io; 

s-’(L) = S(L)/&& (A.16) - 
s-’(L) = S(L).  

We need the following properties of S(L): 
C+ka 

S(L)E(x(p)S-’ (L)  =E(L(x  + u ) l p )  exp(ipa -& d5’(-2pA +€A2)) (A.17) 

s ( L ) ~ * s - ’ ( L )  =2* exp( Ti&). (A.18) 
The vector potential A p ( x )  = [e? exp(i6) +eP exp(-i()]a/./2 transforms as 

LI””AU(~)=AC”(L(x  + u ) ) + P ( A ( L ( x + u ) ) - A ( x ) )  (A.19) 
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with a gauge function 

(A.20) 

We can now investigate the behaviour of the Volkov transform of the propagator with 
respect to the transformations (a, L )  specified by (A.14). Using (A.12) and (A.17) we 
obtain 

ie’(p, p’) = 
1 I d4x d4x’ E ( ~ ~ ~ ) ( O ( T ~ + ~ ~ X ) ~ ~ ( X ’ ) ~ O ) E ( X ’ ~ P ’ )  

x (-2pA(f”)+eAZ(53)] S-’ (L)g(L(x  +a) lp)  

x (o(Ti)A’(L(x + a))ljA’(L(x’ + a))lO)E(L(x’+ a)lp’)S-’(L). (A.21) 

Performing a gauge transformation 

JIA’(L(x + a ) )  = exp(-ie(A(L(x + a ) )  - A(x)))i+hA(L(x + a ) )  

in order to restore the original gauge dependence the first part of the integral, i.e. 
(-2pA), cancels. This reflects the gauge invariance of the Volkov transform of the 

propagator. The second part, EA ’, cancels anyway since A is constant. 
We take now 

(A.22) = -1 2 ( x + x ’ ) P = - X ~  

so that L = L(X)  and oC = kX. Then equation (A.21) becomes 

iG’(p, p’ )  = - I d4X exp[i(p -P’)NS-’(L(X))g(p,  p’ )S(L(X))  

where 

g(p ,  p’) = I d4z E(L(X)%I z P)(OI Ti+hA (L(X)fz)i+hA (-L(X)fz)lO)E(-L(X)fz 1 ~ ’ )  (A.24) 

does not depend on X :  due to gauge invariance it depends only on the scalar variables 
pL(X)z,  p’L(X)z,  (L(X)z)’ ,  kL(X)z which are all independent of X.  A complete basis 
of Dirac matrices is given by Ai and&*,where 

- 
(A.23) (W4 

Ai = 1, k, P, &+, e-I9 ~sk, Y$, ~ k ,  YS 

and 

B i = l , k , P , ~ s  
commute with S(L) .  If we decompose g(p ,  p’) with respect to that basis 

g b ,  p’) = gib,  p’)Ki + (+!+)(P, pI)SiL?+ +u~-)(P, p’)Bg- 
and apply equation (A.18), we find 

gi i (p,p’ ) -S(p-p’ ) ,  aj‘)(p,p’)-S(p-p’*k) 

as in equation (27). So this structure obtains to arbitrary order in cy as asserted above. 
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